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I. INTRODUCTION

Among the various methods for the representation of the

earth's anomalous gravity field, the point mass model

representation is particularly attractive both because of

its conceptual simplicity and probably because of its closest
"neighborhood" to geological reality among all proposed methods.

The generation of a point mass model, however, is not only

non-unique, but also not quite simple. The difficulty lies

in a) the non-uniqueness cf the problem, b) the computa-

tionally demanding relation between mean values and point

values, c) the use of mean values of various kinds like 5 x 5,
-,0 0

1 x i, and so on.

In a former report (SUnkel, 1982) we demonstrated the reasons

for a multi-level mass point model employing known statistical

properties of the earth's gravity field. In the present contri-

bution the conceptual mathematical problems have been solved

and a conceivable algorithm for the actual generation of a

mass point model presented. Frequency domain methods have

been frequently used throughout this paper.

The evaluation of the kernel which relates point masses and
mean gravity disturbances, requires integration on the sphere

over a limited area - a time - consuming process. In order

to speed up calculation, a fast approximation has to be
designed and the approximation error to be estimated. Using

Peano's theorem on the sphere and the method of Sard, "best"

approximations have been derived for various kernel approxi-

mation functions and the corresponding approximation errors

have been estimated.

The relation between the depth of the point mass level and

a set of mean gravity data at zero level has been derived

from the principle of minimum deviation of 2 operators:

the smoothing operator (which transforms point data into

mean values) and the operator which turns point masses at
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a certain level into its gravitation.

The algorithm for the mass point model generation is entirely

based on fast Fourier transform methods:

the data and the operator are transformed into the frequency
domain, the solution of the linear system performed, and

the result re-transformed into the space domain yielding
the required set of point masses. Due to the use of mean

values of various kind, a recursive procedure had to be

designed.

V.j
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2. POINT MASSES AND MEAN GRAVITY DISTURBANCES

The gravitational potential T generated by a set of point

masses (m} is given by

j Gm.T(P) X , ( (2-1)
j=T ' J

G denotes the gravitational constant, I(P,Q.) the spatial dis-

tance between the calculation point P and the location Q.

of the point mass mj . The negative radial component of the

corresponding gravitational vector VT will be denoted gravity

disturbance and can easily be derived from (2-1),

g) T J r -r cos*.
- =j=1 13 (PQ j) I Gmi (2-2)

where r stands for radius. Given (m } , the calculation of

6g is straightforward.
Let us now investigate the relation between point masses

and mean gravity disturbances, assuming that all the point masses

are located on a sphere with radius a < 1 with the gravity dis-

turbance determined for a point on the unit sphere a = 1 con-

centric to the former sphere. Then rp = 1 and r = a and the
4j

position of P on the unit sphere is given by the unit vector

, the position of Q by an with the unit vector n
The kernel in equation (2-2) is homogeneous and isotropic

and can be represented in terms of a series of Legendre polyno-

mials P (cos) (Heiskanen & Moritz, 1967, p.35),

1-acos = (n+1)aPn(cCs) • (2-3)
1 nx=o

I .--.
*1 *. ** * L-.*~ 16d ~ *% ~ ~ '% V ~ %!~v .-.. .. v.*.- .:.- *- :*
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Representing P in terms oforthonornal surface spherical har-
n

monics (0nm} ,n 0,... m = -n,... ,

+)

(Ofl(0)kl(&)da(&) = 6 6'm (2-4)J nk ml
0

with the decomposition formula

P 4n n (2-5)Pn(E'.) = ZT-T I Onm(") nm(n),(-5
m=-n

the dependence of the kernel (2-3) on the position of P and

Q on the unit sphere, represented by the unit vectors { and

n , is given by

(1-acoso pQ) n+= 4 nO n+1 n n(2-6)3 41 Tn+- a X On,(&)On,(n) (26
P n=O m=-nPQ

If we want to determine the kernel between a point mass and a

mean gravity disturbance, we have to calculate the mean of (2-6)

with respect to P

tn

MP 13-coO~ = 4w n+1 n 10(M (~,273 n+1 nmnm P nm

n=O m=-n

where M stands for the mean value operator

M {(-)} = w1 (-)da (2-8)

hW*4

taken over a limited part wca of the unit sphere a The mean

gravity disturbance 6g

+) Note the difference between our definition and the definition
of fully normalized spherical harmonics of (Heiskanen &
Moritz, p.31

I, ,..'. ,i' :"."";"'4. "'.' " . - '.''''' '.' QQJ r- ~ '- : : ,' .".
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6gp = MP{g}

can then be expressed by

Ut - J 4 n+1"'P = 47 G m (n) 4 W. (2-9)
j= n= 0  - n n

It is evident that the rate of convergence of (2-9) depend- in

and therefore on the depth (1-a) of the point mass sp! -e.

Shallow point masses will cause a slow convergence, deep nt

masses a rapid convergence. (If a = 0 , all the point ma ,-

are concentrated at the center of the sphere and all terms ,o > 0

are annihilated by the powers of a .) Therefore, for very deep

masses the summation can be terminated at a modest n = N ; how-

ever, in our study even for the most favourable depth (D = 550km)

the summation has to be carried out at least up to the degree

n - 150 in order to obtain 6 significant digits. Consequent-

ly, the use of equation (2-9) for the calculation of mean gravity

disturbances is prohibitive despite the existence of a very smart

algorithm for the calculation of integrals of associated Legen-

dre functions (Gerstl, 1980).

As an alternative, we suggest a local approximation of the

kernel by a low degree polynomial which, restricted to the sphere,

is a linear combination of low degree spherical harmonics. Such

an approximation allows us to estimate the error of the kernel's

mean value for the area in consideration by taking advantage of

Peano's theorem and moreover, to estimate the best possible

approximation in the sense of Sard.

-% 4
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3. LOCAL KERNEL APPROXIMATIONS

Sw In a paper by SUnkel and Rummel (1981) one possible local

kernel approximation has been proposed; an integration error

estimate has been given for the very special case that the cal-

culation point coincides with the pole. In this particular case,

* the one-dimensional Peano theorem can be applied. Considerable

effort in overcoming this deficiency has been made by W. Freeden

culminating in a particularly beautiful elaborate investigation
"On Spherical Spline Interpolation and Approximation" (1981).

In the sequel , the results of this paper are used from an

application point of view. In particular, we are interested in
both the estimate of the error which we commit, if for the inte-

gration a local low degree polynomial approximation of the kernel

is employed, and in the best approximation by such a polynomial.

Since the author of this paper favorizes the inductive approach,

the simplest case will be studied first. For the sake of simpli-

city we further assume in the following derivations that the cal-
culation point is kept fixed; then the kernel to be studied is

a function of the integration point only.

°-

3.1. Approximation of degree zero (J = 0)

The simplest approximation of a mean value of a function f

is obviously given by a single function value which is usually

Staken at the center of the area in consideration. The mean value

of a function (for a limited area w Ca of the unit sphere)

is a linear functional L applied to the function f and can

be represented in terms of

.. ,.

I-.cliaigi atclry euiu lbrt netgto

S,.j

w grto oa o ereplnma prxmto ftekre
. . ,*SS. ... . . . . . . . . . . . . . . . . . . . .
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Lf = g(n)f(n)da(n) (3-1)

with the characteristic g

f 1 for n E

g(n) =, (3-2)
0 else

This mean value is approximated by a single function value at

a preselected point &1 , which is again a linear functional L

Lf = a f(E) " (3-3)

the remainder Rf (another linear functional) is consequently

given by

Rf = Lf - Lf = (L - L)f

= g(n)f(n)da(n) - a If(E) . (3-4)
4' a

For the following we assume that fE (a) , the space of all

twice continuously differentiable functions on a

Peano's Theorem

-Let us assume that R annihilates all zero degree poly-
nomials, Rh = 0 vh E IP . Then, according to Peano's theorem,

Rf can be represented in terms of

Rf =jK°(n)A*f(n)da(n) (3-5)
. .
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with the spherical Peano kernel

K (() R G ( ,n) (3-6)

and Green's function (Freeden, p.566)

G ( 2n+1 pn(E.n )  (3-7)'-0 n= |~n+-

In this context A denotes the Beltrami-operator, which is simp-

ly the restriction of the Laplace-operator A to the unit

sphere a

a (1-t2) a + 1 (_L]2 t: = cose (3-8)1-t2

applied at the point { E a having spherical polar coordinates

e and 1

Using Schwarz's inequality, an upper bound for the approxi-

mation error can be given by

(Rf) 2  f [K(n)] 2 da(n) • f [A n* 2 , (39)

a a

The first integral on the right hand side can be shown (Freeden,

'P p.558) to be equal to

A: = J[Ko(n)]2da(n) =4 2 R R Go (3-10)

with the iterated Green's function

(2) ( , )=4 2n+1
Go 0 4T nnrl)2 Pn .) (3-11)

n, ln(n+1),
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According to the decomposition theorem, the Legendre polynomials

P (C.c) can be expressed in terms of the normalized surface

spherical harmonics nm ' m = -n,..., n,

'2 1
0 n=I [n(n+)] 2 m=-n nm nm

The application of (3-10) yields

A IA - 2 a onm(E ) + a 2 )]
n~I[n(n+1)I2 LI -2 1m2na rI 22nm

m=-n (3-10)'

The second.integral on the right hand side is equally simple to

evaluate: since our original kernel f to be investigated is

homogeneous and isotropic and since the integration in (3-9)

has to be carried out over the whole unit sphere a , the posi-

tion of the calculation point is immaterial ;therefore, we choose

the pole e'= 0 . In this case the Beltrami-operator reduces to

the Legendre-operator

d f_2) d(i-z~ t2) a-t, (3-12)

and with our expression (2-3) for the kernel and with the use

of the Legendre differential equation

d td (It ) Pn(t) = - n(n+l)P (t) (3-13)-H n n

the operation A*f yields

A *f =- X n(n+l) 2aP Cn(t) • (3-14)
n=1

Taking into account the orthogonality of the Legendre polynomials
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(2
Pn(t)PM(t)dt = T-T 6 m

S -I

(6 ... Kronecker symbol), we obtain
I~

B:= [A f(n)]2do(n) = 4n I n n+1 1 (3-16)
n ~n=1 2+

0

and the estimation for the upper bound of the approximation error

IRf'< S . (3-17)

Let us investigate this estimate in more detail: for the calcu-

lation of A we have a) to calculate the mean value of surface

spherical harmonics for the area in consideration and b) to

evaluate the surface spherical harmonics at a (single) point.

In this respect there is practically no difference between (3-10)'

and (2-7); however, due to the strong damping factor [n(n+l)] - 2

the series (3-10)' converges strongly and, as a consequence, only

relatively few terms are necessary compared to (2-7) which, even

under optimal circumstances (D = 550km) , has to be evaluated

up to a very high degree (about 3 times higher if the result is

to be accurate to 6 significant digits); the situation is getting

even worse with smaller D . The calculation of the factor B

is very simple and has to be carried out only once for each D

It is evident that the convergence of (3-16) is faster for a lar-

ger D . The behavior of (3-16) is quite similar to the one shown

in (SUnkel, 1981, Fig.2.1, pp. 9,10) with the maximum shifted

to the right due to the higher power in n .

The next step will be to find the best value for the coef-

ficient a, such that the remainder (3-17) is minimized under

the constraint Rh = 0 V h E IP
0

J' q; , v .. * ,' . ''.'.",¢, ? .? . '-. .. / , '.i- ."" , '.:. , ' . .'-- - .. -" '. .-"-;,"- -
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Since B is independent of a , it is a mere scale fac-

tor and can be put equal to 1 . Therefore, the optimization
problem can be formulated as follows:

n n

=1 =0. :--

0 N1

With *o~ = (4n)-g and (3-2) the first expression simplifies to

a -

'S With the constraint mentioned before (second line of (3-18)), this
leads to the following linear system with the two unknowns a

and the Lagrange multiplier 

() rn-n =In=! In(n+l)1 rn=-n1

* (3-191

* Since

n 2 2n+1

and

S 2n+1 = [L -1 1] = 1 , (3-20)

N =the above linear system reduces to

-p ". ° ' ', " , x , " : ; c v ' '; , , € ,% " i ,4 '; ' -4 '; 4 2 ' ' ' - ' €, , , ,£ . '2 '2 ' -. - . ' . . . , ,: , .
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1

a ~ I, .-?% n= [n(n+l)] m=-n (3-21)
LAL1L1

with the solution

a1 1P [nnl"2 + Xmn( )  (3-22)

n1 [n(n+l)I m=-n

Therefore, the best approximation of the kernel's integral by a

single kernel function value is obtained by

Lf = f(&,)

and the aposteriori error estimate of this optimal solution is

given by
()2  n 4 1_Cm { 1 2.  k 2(k+l) 2k

(Rf) 4 42 1am -1 2 ] x 2k+1 a (3-23)

n=1 n(n+l)] m=-n k=I

A special case is obviously given if the area of averaging w

reduces to zero and if C is (as usual) located at the center

of the area. In this case inm = Onm(&|) and the error becomes

evidently zero as one should expect. This concludes the error

estimation of a zero degree local kernel approximation.

How do our formulas change if Lf is approximated by a

linear combination of I > I function values,

U q' 4 4 M .4 ., % . ~. .. L - * ** * . . .1 IfI
+

• i
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II
.. Lf : I a if ( i )

if a f (3-24).'w'*i=I

such that Rh = (L-L)h = 0 vh E P ? As a matter of fact the
0

definition of the remainder will now be

Rf : g(n)f(n)da(n) - aif(& i ) (3-25)
; ' i= I

and as a consequence

nI

2 [nm 2 nm nm(C i )n=ifn(n+l)l rn=-n i=(3-26) (3-2I

+ a
i I j=I I "

Now A depends on I parameters {a.} and therefore, the op-

timization problem requires the solution of a linear system of

dimension I + 1 :

a_ fA (ridari I . 1=
a i  - 7"4 L(n) °°( da(n) I a (& 0

(3-27)

which -we will write in the form

Ux =y

or

(U o xJ= lyj (3-28)

A,1.11',

5%7-



-14-

4"..

with the (IxI) symmetric positive definite Gram matrix U1,

U =V(0) P = I I j (o) 2n+1
U 1 n f IJ J , , .. , [n(n+l)I2'

(3-29a)

the I-dimensional vectors U2, x1 Y1

T
U2 = fi, i,..., 1} (3-29b)

T
x I = {a,, a2,..., a , (3-29c)Go (0 n n ~ m
Y m = I V 2n+ I nmnm(i) 1 I ,(3-29d)n = I m--n n' '

and the scalars x2  and y2

X 2 =A, (3-29e)

Y2 = 1 (3-29f)

The solution of the system (3-28) can be easily found by Cho-

lesky's method.

3.2. Approximation of degree one (J =.1)

The next simple approximation is given by a first degree

fit which requires a minimum of 4 function values to be line-

arly combined 3)However, let us consider an arbitrary number

I > (Z + 1)2  of function values; then Lf will be approximated

by
4.

Lf = ; a~f(E.)

1) ... = the dimension of the space including zero and first

degree polynomials
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Then Peano's theorem states that the remainder Rf can be re-

presented by

Rf ; JK,(r)[(&)(& ),f(n)da() (3-30)

a

with (a) A* + 2 (3-31)
n n

and the spherical Peano kernel

.' t I

K(,) - R G ((n) (3-32)

and Green's function

4I) 2n+ 1"'(9,n = 4n+1 n(4.n )  -(3-33)
--"-% I) ,n n= 4 Z n(n+l)][h n+l)-Z]

With Schwarz's inequality we obtain the estimate for IRfl
.1X*

(Rf )2 [K (n)] daln)-[(A*)(An)if(n)12da(n) (3-34)

0

As in section 3.1. the first integral will be denoted by A

and is equal to

A =f[K,(n )]2do(n) =4 
4 R.R G(2)(E,r.) (3-35)

with the iterated Green's function

G(2) = (4 )3 3 2n+1 P n) (3-36)n=2 [n(n+l)] 2 [n(n+l)-2 2 P ( n) 3- )

The application of (3-35) yields

N.,
a..o.

#9 °°, , °,,"% .. """" o.,, . . ".,'i'-2 ,. . " ". -' . " o" " . ". "•,
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4n

J,.

A < {[n(n+)[n(n+1)-2] 2  n M 2j m a. nm( i)
n=2 M=-

+ a . aajnm(Ei)nm(j) (3-37)
i=I j=1

-2The factor {[n(n+l)][n(n+l)-2]} goes very rapidly to zero
and as a consequence only very few terms of the series have to

be considered. Let us now turn to the evaluation of the second

integral in (3-34) which we again denote by B

B = J[(An)(A" + 2)f(n)]2da(n) (3-38)

With the representation (2-3) for our kernel we obtain

2I 2
(A*)(A* + 2)f = [ n(n+l[) ,(n+1) - 21anP (t)

n=2

and considering the orthogonality relation (3-15) we obtain

n 2 (n+1) 4 [n(n+l)-2] 2
B =4.n=2 i Zn+1 ,2n (3-39)

n=2

The relation between the two components A and B deserves to

be discussed: from (3-10)' and (3-37) we conclude that the number

of spherical harmonics and its local integral to be computed de-

creases rapidly with increasing degree of approximation; at the

same time the number of terms needed for the calculation of B

increases with comparable speed (cp. (3-16) with (3-39)) and
2with (Rf) < A-B we have once more a beautiful example of the

balance of difficulties: blessing-burden = constant.

The best estimation of the coefficients [a.} , i=,...,I
id ~ is also getting more laborious for two reasons: first, because

r.
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2
of the relation I (J + 1) , and second, because of the

2
(J + 1) constraints, the linear system (3-28) has, for the

first order approximation case (J = 1) studied in this section,

at least the dimension 2(J + 1) = 8 . The (J + 1)2  constraints

are due to the required annihilation Rh = 0 vh E P , where1

P1  is the linear space of all zero and first degree polynomials

in three variables, restricted to a . Therefore, the optimiza-

tion problem is formulated as follows:

I n{ -V74X r X,jfrgkn) (n)do(n) a C1
.0 n=o m=-n j=1 (3-40)

.0 af
nm -

which leads to the linear system (3-28) with

O p ( .. M 1 , ():= 2n+1
n2 [n(n+l) 2[n(n+l)-212

T= {a} , i =

x 1,...

Y T{ (I 1 nmJ

n =n, I = 1
n=2 oo -i

Note that x2 and y~are no longer scalars; they are now vectors

of length 4 , (because of the 4 constraints in the linear

model we need 4 Lagrange multipliers),

= T I-'x10

2_ 0 0 1* 1* 1
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yT

=J 4

As in section 3.1. the solution can be obtained by applying

Cholesky's algorithm.

3.3. Approximation of arbitrary degree J

The general case of approximation degree J requires a

linear combination of I a (J + 1)2 function values and the

error estimation is based on the requirement that the functionf 2(J+1)(
f E(a) . According to Peano's theorem the remainder Rf

can be represented by

Rf = Ka(n)A*)Jf(n)]da(n) (3-42)
1i L

with
(A n  J A
(A*) =n + K) =( + K (A* + K), (3-43)

SJEo n n 0 n JIII

and the eigenvalues K. = j(j + 1) of the Beltrami differential

operator (Freeden, 1981, p. 553). The spherical Peano kernel

K((n) is given by

K (n) R G W ((n) (3-44)
.-,

*and Green's function by

G(I( n)= (4n) I (2n+1) r (K n-K Pn(.n) (3-45)bj , n=J+ I =on

4 . '.,.;w ' ,,, -' .- -. ,...... -: .. , .. . ..... :. ..; .7 ,,.
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(Freeden, 1981, p. 556). Evidently, for J = 0 we obtain (3-7),

for J = 1 equation (3-33). Schwarz's inequality provides an

estimate for jRf max.'

(Rf) 2  f J[KI(n)] 2do(n)- ( *) In )]2 d (n)n  '(3-46)
.~q0 0

The first integral is equal to

A = f[Kj(,)]2d (n) = (4,)-2(J+I)R R G((,c) (3-47)
0E

with the iterated Green's function

G ( ) = (4r)2 +1) 0 (2n+1) I (- P ( - );(3-48)
n J+ 1

note that G(2) is simply the result of a convolution of G (1 )

with itself,

G (2 ) =J G()* Gj) (3-49)

With (3-47) and (3-48) A can be shown to be equal to

Fo j 2 nI
AK - I ~ - 2 a*n(E)

n=J+l M=ni=

+ i aia jnm(&)nm(E i (3-50)
i=1 j=1

The second integral

B: = f (n 2 do(n) (3-51)

,%

5%.

-4.

" / ,'. 4,: . ,. -. 4..;-,* ( .. .,. . , .'*-- - . ..' - -, .. s*.-' . . -,, -. .. - -- , . '- .- .-. . ,
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reduces to a very simple representation if f is a homogeneous

- and isotropic function. This is true for the kernel function

discussed here (equation (2-3)). With

V.J
(A*)jf(t) = H (Kn- K](n+1 )P (3-52)

(~~ ~ n~~t n=-- i .n(t)n=J+lJ
.. ,

and the orthogonality relation (3-15) we obtain
41 Go ,n 2 ( -3

= Z {L~(Kn-K )(n+1)} (2n+1) - I (-3

n=J+1 -

The best estimates of the coefficients {a.} are obtained from

the solution of the optimization problem

qf A I
3a. I I L nm gn)@nm(n) aj n= 0

n=o m=-n j.=1 (3-54)

{0
nim

which leads to the linear system (3-28) with

,.(, (2n+)P I
44. n=J+l (O 1,3 =

S n ,--., J, m -n,...n,
2

x= {a.} i = , I (3-55)

' T- 2 n
y ( K  i i = 1,..., I ,

n=J+ 1y { La(KJjjm=-rnrm~n

4.....z ' .' ._ ' r .. ' .. ' ',....'' ' ',..,' -, '..•' / ' 
, # - " , - . " . ,, . - , - , . . ", , , , """", ":"
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T
X2  {Anl} , n = 0,...,J, m = -n,...,n

Y2 T 4- n : O,...,J, m -n,...n2 nma

The advantage of a fast converging A is balanced by the dis-

advantages of a slowly converging B and the solution of a

large linear system Ux = y . Since the convergence of B de-

pends strongly on the value of a and therefore on the depth

D , we conclude that a first (probably even a second)degree

approximation is advantageous for a small a (large D ). If

a is very close to 1 (small D ), we are obviously in troubles

because due to the poor convergence of B we have to keep the

degree of approximation low (probably at zero); as a consequence,

the convergence of A will be very poor and the estimation of

the approximation error a laborious expensive task.

Wa.

'2

-- o '' ' . . '" " . . . .' . .. . . ; " " " " . . ." ' " " "
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4. GRAVITY DISTURBANCE MEAN VALUES VERSUS DEPTH OF POINT

MASSES

In this chapter we shall investigate at which depth

the point masses are most likely to be located if they are to

be derived from mean gravity disturbances of various size like

50 x 50, 10 x 1° , etc. In other words we look for (gravity

disturbances) averaging operators with a spectrum (eigenvalues)

as close as possible to the spectrum of the operator trans-

forming the point masses into gravity disturbances.

For this purpose we will assume a continuous (rather

than discrete) anomalous mass distribution on a geocentric

sphere with radius a < 1 . The gravity disturbances are

assumed to refer to the geocentric sphere a = 1
According to equation (2-3), the isotropic integral

kernel K of the operator which transforms mass anomalies

into gravity disturbances, can be represented in terms of

I C
(n= I (n+l)anP ( • (4-1)

r1=0

We employ the Funck-Hecke theorem (MUller, 1966), which states

that the eigenvalues k of an isotropic integral kernel Kn

on the unit sphere are given by
I

k 2v K(t)P(t)dt (4-2)
n j n

F -1

with P denoting the Legendre polynomial of degree n andn
t = cos@p Due to the orthogonality of the Legendre polynomials

-. I
P(tMP(t)dt = 2 (4-3)

ii -1

. 2 ..

.,".
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the eigenvalues of the kernel (4-1) are obtained as

n+1

k; --, n ,(4-4)
*n 

+-T

which behaves obviously like cgn for high degree n.

The question is, can we find a kind of moving average

operator which behaves similarly?

Let us investigate the moving average operator acting

on a circular cap of radius 0o

f(B) : B(.n)f( n)do(n.) (4-5)

with the isotropic integral kernel

(1 for ' cos
-a-. 1

B(En) = 2- (4-6)
w.f,-Cosq,) 0 else

According to the above referenced Funck-Hecke formula, the

eigenvalues O of B are given byn

B = i Pn(t)dt . (4-7)In = 1-cosi0
to

The integral yields 1 [P (t P (t ) which canZn+1 n10 n+1 0

a' be used to design a recursion formula for B (Sjoberg, 1980),n

"0 (to) = 1

01 (to) = . (1+to) (4-8)

n(to) = n1 [(2n-l)t B (to) - (n-2)B (t )] ' n a 2
S, ,to =: oTo, n- 1 o n-2 0

* r
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These eigenvalues approach zero by oscillating around zero,

dependent on to  For the extreme case o = 0 (no smoothing),

all eigenvalues are equal to 1 , for the extreme *0

(total smoothing), all eigenvalues are zero apart from the

zero degree eigenvalue which is equal to 1

Now, the behavior of these eigenvalues does not quite

agree with that of kn  given by (4-4); an approximation pro-

cedure could be designed which fits (4-4) to (4-8) in the best

possible way yielding a best possible value for a and, there-

fore, for the depth of the mass anomaly layer. For the purpose

of obtaining a closed expression for the covariance function

of mean values such an approximation is actually used; this

is basically equivalent to replacing the mean values at zero

level by point values at a certain altitude dependent on a

This technique provides us with information on how to select

the depth of a mass layer corresponding to gravity disturbance

mean values of rectangular blocks of a certain size:

block size -4 depth

Denoting the harmonic coefficients of the mass-distur-

bance implied gravity disturbance 6g by g and the har-

monic coefficients of the distribution of mass disturbance

2wT6 by pnm ' we conclude from (4-4) that they are related

to each other by

g n-tl (4-9)
n+ nmgnm In+ nm(49

Since a < 1 , the behavior of the mass-disturbance implied

gravity disturbance at zero level will be smoother than that

of the mass disturbances with the degree of smoothness depen-
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ding on the depth of the mass-layer. Vice versa, deriving

mass disturbances from unsmoothed gravity disturbances is

an unsmoothing process and comparable to differentiation.

A stable transformation from one quantity to another one can

be expected if the frequency behaviour of the output function

is smoother than or at least as smooth as that of the input

function. Therefore it is a good advice to use mean gravity

disturbances 6g" with harmonic coefficients grim related to

grim by

gnm n grm (4-10)

to determine 61 such that the behaviour of kn is comparable to

that of (4-8). In other words, the unsmoothing 6g - 6U has to be

balanced by a sufficiently smooth 6b.

As far as the determination of a "best" value for the factor

* is concerned, one could follow the ideas of Schwarz (1976)

and fit the eigenvalues { kn } best (in the sense of least -squares,

e.g.) to the eigenvalues { Bn } with n <N (o). If a belongs to

a large D, N(a) will be low (on the order of a few hundred for

D-.500 km, if a belongs to a small D, N(c) will be high (on the

order of a few thousand for D -.10 km); the degree of truncation

N(a) depends on the depth of the point mass layer D. (See

chapter 2 of SUnkel (1981).)

I.
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5. AN ALGORITHM FOR THE DETERMINATION OF POINT MASSES

In (SUnkel, 1982) it was argued that a mass distribution

confined to a single layer is inadequate forthe representation

of the disturbing potential. Mass distributions on a few layers

at various depths are preferable. In chapter 4 we have discussed

how to determine the most appropriate depths provided a cer-

tain mean value information on gravity disturbances at zero

level is available.

Let us now describe the principle of the procedure which

could be used to derive point masses from known gravity dis-

turbances. For the sake of simplicity we will assume that the

various mean values can be approximated sufficiently well by

a corresponding moving average as described in the previous

chapter. Then the actual gravity disturbance harmonic coeffi-

cients (unsmoothed) can be represented in terms of

S L 0  n (5-1)

with 0(o) -1 vnEti and s(I+1)= 6S Let us illustrate
0n no

equatio0n (5-1) by an example: consider 0(1 ) as the eigenvalues
of the moving average operator corresponding to a mean value

of 10' x 10' , (2) corresponding to 10 x 10 , and ^13)

corresponding to 50 x 50 . Then ((L) (L+1))g a gr

would be the coefficients of the 5 x 5°  mean values,

(a (2)_ - (3))g the coefficients of the 10 x 10 mean values
n n rim 

( ) 2 )referred to the 50 x 50 mean values, (l)( 2 ))gnm then n n
coefficients of the 10' x 10' mean values referred to the

10 x 10 mean values, and (o(O)_B())g 4 (1- 0('))g the co--m =n )nm

efficients of the actual gravity disturbance field referred

to the 10' x 10' mean values.

J4 .; " , :' '" ' '. ,€-''" - '--;"""""'.:"'-; --. ; ,; "' . ") ' W "
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According to (4-9) the coefficients g are related to the I

coefficients of the mass disturbances by .

I.4

%L

Acrng to r4-9) thei (5-2)et nmaereae t h

n1 (1)

The coefficients M refer to the mass disturbances at the

nnl

layer 1; the layer 1is assumed to be the most shallow

and 1 = L the deepest layer. Comparing (5-2) to (5-1),

L Lo (8( 1)-( + 1) = L n+1 n (1)

10 1=0 n+ r( )

then a "separation by layer and mean value" presents itself

as a practicable method to determine mass disturbances from

mean gravity disturbances,

1 m(_ a(l+1)mg n+1 n PM (5-4)n nn rim nm

In other words, we intend to determine the mass disturbances

located at the layer 1 from gravity disturbance mean values

corresponding to the smoothing 1 and referred to the (1+1)

smoothed values. For our previous example this means that the

point masses at depth D = D (1 = L = 3) should be de-

termined from 50 x 50 means, the point masses at depth

D = D (I = 2) from residual 10 x 10 means (referred

to 50 x 50 means), the point masses at depth D = D

(1 = 1) from residual 10' x 10' means (referred to 10 x 10

means), and the point masses at zero depth D = 0 from the

residual gravity disturbances (referred to the 10' x 10'

mean values).

4 4 C°.
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5.1. Point masses of 50 x 50 and 1° x 10 etc. global mean

gravi ty disturbances

It is natural to put mass points at the center of each mean value

block. Therefore, to each 50 x 50 mean value there corresponds one

mass point at depth D = DL; given the vector of 5 x 50 mean gravity

disturbances g, we have to find the vector of point masses p by

solving the linear system of equations

g = C . (5-5)

Let us now investigate the structure of the matrix C

in detail. We assume that the sphere is subdivided into I

(equally spaced) parallels and J equally spaced meridians

and that to each grid element [ i I A.I A ] there

corresponds one mean gravity disturbance to its center of

point mass. Then g and v consist of I subvectors (cor-

responding to I parallels) consisting of J mean values and

point masses, respectively, (corresponding to J meridians);

in the same way the matrix C consists of 12 submatrices

of dimension j2 eachcorresponding to the subdivision of

the data vector g and the solution vector V ,

g = Fg , I = I c = -C1 1  c .. , d -

9g2 2 C 2 1 C 2 2  C2 I
Ii

ig' C'' c 2  CII (5-6)

i ., ... ~ V% ~ ~ VV . , v v
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9. ..

%.,.'.

9 Ti = (gij} , j = 0, , J-1

T i = ij} , j = 0, , J-1

jii' j

(cii: j~j Ot .. J-

C"' is the matrix which relates gi to Ui ' i is the

coefficient which relates g'ij to P' V. From thej regular

distribution of the data and the unknowns with respect to

longitude it is evident that ci '- depends only on the longi-ii'
tude difference X - for each pair of parallels (oi,€i,).

Matrices of this kind are known as Toeplitz circulant or

briefly circular matrices, because row number j equals row

number j-1 rotated by 1 element. Circular matrices become

diagonal matrices under a discrete Fourier transformation.

This property can be used very advantageously to design a very

efficient algorithm for the solution of the very large linear

system (5-5), using frequency domain methods. In the sequel,

we shall briefly outline this method following closely the

fundamental work by Colombo (1979).
. The first row (and all the others) of every submatrix

is an equispaced sample of an even function; therefore, it has

only a non-vanishing cosine-spectrum with Fourier-coefficients

cV"' (an overbar denotes a quantity in the spectral domain,
k

k stands for a discrete frequency),

ii' 1 J- cii,
ck = o ,cos-kj , (5-7a)
k j' oj

and vice versa, the elements of this particular row are obtained

by an inverse Fourier transform,

..
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.j

K

c ii' X ii'coswkj' (5-7b)

Oj- kk=O

with w: = 2.rf/J

K: = int(J/2) (5-7c)

( J if k = 0 or k K (J even)
H: =

J/2 if 0 < k < K (=K if J odd)

The row number j equals row number j-1 , rotated by one

element, and therefore ci"' is synthesized by
ji'

K

ci'= F 'coswk(j'-j) (5-8)

k=O

Using the orthogonality relations between equispaced sampled

trigonometric functions

1 J if k =k' =0 or k = k'=K (J even)

. coswkjcosw k'j = J/2 if 0 < k <K(=KifJ odd)

J--o 0 if k t k' 9.4.
- { J/2 if 0 < k =k' < K (=K if J odd)
I sinwkj sinkj =0 el

j=o 0 else
-4

J-1
coswkjsinwkj' : 0 v k, k' (5-9)

j=o .

we obtain

Hoskj I i' coswk , 0 s k s K .(5-10)
sinwkj j'=O nk i'J

a

0.4 ~ 4- .-***., ,L~\..,% 4 s\ i~. *~~" V \. ~. ,.-
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Consequently

c T : = (coswkj}

j = 0, , J-1 (5-11)

s T : = (sinwkj}k

are eigenvectors and c' H eigenvalues of the submatrix Cii'.
k

Let us now transform the vectors g and p into the

frequency domain (-9, P)

i-- ~. - -17
= k g9k Uk p

-2 -2

(5-12)

Pk kj'I.

with - C
s

k
(5-13)

and 3. 6 k
kc k s

observing (5-5) and (5-10), we find immediately the relation

between y and 6' 
k k

I

yI = - k 'H6"' (5-14)

Denoting the I.I matrix of eigenvalues V-i'H by E
k k

equation (5-14) is given by

Ik = Ek6k(5) k k k(5-15)

and 6 - Y , k =0, ... ,K.

? ~ ~ k~ k.-~ **.-.-~.-:. :
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Here we have already the algorithm at hand which permits the

fast transformation from the known mean gravity disturbance

vector g to the unknown point masses P.:

1) Calculate the first row of each submatrix C"'

and transform it into the frequency domain by fast

Fourier transformation;

2) Establish the matrices E for k =0,..., Kk
and calculate the inverses;

3) transform the data vector g into the frequency

domain (y ) ;
k

4) perform the matrix-vector product 6 k = E1~k

for k = 0, ... , K ;

5) Perform the inverse Fourier transformation of 6 k

(synthesis) and obtain , the vector of point masses,

K i (.5-16)

11 1 Ik
k=O

The advantages of using this frequency domain method

are obvious:

(a) Instead of solving the linear system (5-5) with dimen-

sion IJ.IJ , we have to solve the K+1 linear systems (5-15)

of dimension I-I each. Since the solution time is approxi-

mately proportional to the 3rd power of the dimension of the

linear system, the computation time reduces by a factor of

about j2 (-5200 for the 50 x 50 case, -130 000 for the

10 x 10 case).

(b) Since all submatrices C"' are Toeplitz circulant,

we need only calculate the first row, and moreover, since the

first row represents an equispaced sample of an even function,

only half of the elements have to be calculated. This reduces

the (anyway expensive) calculation effort for the setup of C

-.q

, ,. ,'s- , -,4, ,,,, , : , . ,. , .. . . . . ,. . . . . . . . '. . $ . '. a ' , "-$ '''''_' . '': , , " .. ', , , <



-33-

by another factor 2J compared to the straight-forward al-

gori thin.

(c) The storage requirements are drastically reduced due

to redundancy in the C-matrix

(d) The calculation of all required elements requires the

evaluation of an integral. In chapter 3 we have proposed

optimal approximation algorithms for its calculation, which

can be easily implemented.

Note that in the spherical case C is not symmetric

due to the convergence of meridians (cr' # c.. because

"-" the coefficient which relates a mean value in row i to a

point mass in row i' # i is different from the coefficient

relating a point mass in row i to a mean value in row i';

for a cylinder, C would be symmetric.) However, if the

&rrangement of mean values and point masses is symmetric with

respect to the equator, the number of different elements of

C is once more reduced by a factor of 2

-'I ' , - . - - . - . - . . . . . . . - . . . .. . . ..
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